Dissociation of Biological Catch-Bond by Periodic Perturbation
نویسندگان
چکیده
منابع مشابه
Effect of loading conditions on the dissociation behaviour of catch bond clusters.
Under increasing tensile load, the lifetime of a single catch bond counterintuitively increases up to a maximum and then decreases exponentially like a slip bond. So far, the characteristics of single catch bond dissociation have been extensively studied. However, it remains unclear how a cluster of catch bonds behaves under tensile load. We perform computational analysis on the following model...
متن کاملControlling Multistability by Small Periodic Perturbation
A small perturbation of any system parameters may not in general create any significant qualitative change in dynamics of a multistable system. However, a slow-periodic modulation with properly adjusted amplitude and frequency can do so. In particular, it can control the number of coexisting attractors. The basic idea in this controlling mechanism is to introduce a collision between an attracto...
متن کاملBond dissociation energies
The bond dissociation energy (enthalpy) is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D) . It is defined as the standard enthalpy change of the following fission: R−X → R + X . The BDE, denoted by Do(R−X), is usually derived by the thermochemical equation, Do(R−X) = ∆fH o(R) + ∆fH o(X) – ∆fH o(RX) . The enthalpy of format...
متن کاملForce Modulating Dynamic Disorder: Physical Theory of Catch-slip bond Transitions in Receptor-Ligand Forced Dissociation Experiments
Recently experiments showed that some adhesive receptor-ligand complexes increase their lifetimes when they are stretched by mechanical force, while the force increase beyond some thresholds their lifetimes decrease. Several specific chemical kinetic models have been developed to explain the intriguing transitions from the “catch-bonds” to the “slip-bonds”. In this work we suggest that the coun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2006
ISSN: 0006-3495
DOI: 10.1529/biophysj.106.087288